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Prediction of flame ionization detector response factors using an
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Abstract

An artificial neural network (ANN) was successfully developed for the modeling of flame ionization detector response
factors. The generated ANN was evaluated and applied for the prediction of response factors of several varieties of organic
compounds. The results obtained using neural network were compared with different sets of experimental values as well as
with those obtained using multiple linear regression technique. Comparison of neural network standard error of prediction
values with those obtained using regression equations shows the superiority of ANNs over that of regression models.
Calculations of Dietz response factor for two different prediction sets show that an ANN has a good predictive power.
 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction on the use of neural networks in the modeling of
retention behavior and optimization of conditions in

In the past decade, the topic of neural computing micellar liquid chromatography [8,9]. ANNs have
has generated widespread interest and popularity [1– been applied by several groups in quantitative struc-
3]. Neural computing is usually implemented by ture–activity relationship (QSAR) studies [10,11].
using artificial neural networks (ANNs). The popu- These investigations concern the prediction of chro-
larity of this technique is due in part to the analogy matographic retention index and selectivity coeffi-
between ANNs and biological neural networks. cient of berberin selective electrode.
ANNs are thought to have the ability to learn during Applying gas chromatography (GC) as a tool for
a training process, where they are presented with a quantitative estimations of compounds requires
sequence of inputs and outputs. knowledge of the response factor for each compound

The use of ANNs in chemistry has grown substan- under the GC experimental conditions employed.
tially [4,5]. Zhang et al. reported the application of Since numerous compounds are unavailable as stan-
ANNs for modeling of fluorescence data [6]. Anker dards, the development of a theoretical method for
and Jurs have applied this technique for the predic- estimating response factor seems to be useful. The
tion of the carbon-13 nuclear magnetic resonance first work on prediction of flame ionization detector
(NMR) chemical shifts [7]. There are several reports (FID) response factors (RFs) was published by

Katritzky et al. in which they applied multivariate
*Corresponding author. statistical partial least-square treatment [11]. They
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reported the use of the Dietz RF as a dependent node of the previous layer and W represents theji

variable and six structural and quantum-mechanical weight between the nodes of i and j.
descriptors as independent variables in the prediction A feedforward neural network consisting of three
of FID RFs of some organic compounds [12]. layers is constructed as in Fig. 2. The first layer

The main aim of the present work was develop- (input layer) consists of nodes and acts as an input
ment of an ANN for the modeling of the FID RF. buffer for the data. Signals introduced to the net-
The generated ANN was evaluated and applied for work, with one node per element in the sample data
the prediction of RFs of a wide series of organic vector, pass through the input layer to the layer
compounds. The results obtained by this method called the hidden layer. Each node in this layer sums
were compared with different sets of experimental the inputs and forwards them through a transfer
values as well as with those obtained using multiple function to the output layer. These signals are
linear regression (MLR) technique. weighted and then pass to the output layer. In the

output layer the processes of summing and transfer-
ring are repeated. The output of this layer now
represents the calculated value for the node k of the2. Methods
network.

Training of backpropagation neural network,A detailed description of the theory behind a
BNN, requires the comparison of the network outputneural network has been adequately described else-
with an expected value. This comparison may bewhere [13–17]. Therefore, only the points relevant to
presented in an iterative fashion to the network withthis work are described here. A fundamental pro-
a weighted adjustment after each run. The differ-cession element of an ANN is a node (Fig. 1). Each
ences between the output and the expected valuenode has a series of weighted inputs, W , and acts asij backpropagated to the network and followed bya summing point of weighted input signals. The
adjustment of the weights and biases. The adjustedsummed signals passes through a transfer function
weights and biases can be calculated according tothat may be in sigmoidal form. The output of node j,
Eqs. (3) and (4).O , is given by Eq. (1):j

DW (n) 5hd O 1 aDW (n 2 1) (3)kj pk pj kjO 5 1/ 1 1 exp (2X) (1)f gj

DB (n) 5 gd O (4)where X is defined by the following equation: kj pk pj

X 5OW O 1 B (2)ji i j

In Eq. (2), B is a bias term, O is the output of thej i

Fig. 1. Schematic representation of a node in an artificial neural Fig. 2. Architecture for a three-layer back-propagation neural
network. network.
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In these equations DW and DB are the changes For the training set and two prediction sets givenkj kj

in the weights and biases between the node j in the in Tables 1–3, n-heptane acts as a reference with a
hidden layer and the node k in the output layer, defined RF of 1.00. The compounds studied in this
respectively; d is the error term obtained from the work consist of hydrocarbons, halohydrocarbons,pk

differences between the output and the expected benzene derivatives, ethers, esters, alcohols, alde-
value. The parameters h and g in Eqs. (3) and (4) hydes, ketones and heterocyclic compounds.
are learning rate of the weight and bias, respectively;
a represents the momentum and n and n21 refer to 3.2. Neural network generation
the present and the previous iterations, respectively.

Equations similar to the Eqs. (3) and (4) were The ANN program was written in FORTRAN 77
used to adjust weights and biases connecting the in our laboratory. All of the calculations presented
hidden layers to the input one. The criterion for the by the authors were carried out on a Hewlett-Packard
stopping of the iteration during the training process 133 MHz pentium computer, Model HP Vectra VL.
could be a predefined number of iterations ( p) or a For each compound the quantum-mechanical de-
desired difference between the output and its ex- scriptors were obtained using the MOPAC program
pected value. In order to obtain a parsimonious (version 6) [20]. The number of input nodes in the
model, the network architecture was modified and NN was equal to the number of descriptors and the
tested. The number of hidden layer nodes, learning number of nodes in hidden layer were optimized.
rates and momentum were parameters optimized. The initial weights were randomly selected from a

In the present work for the sake of comparison a uniform distribution that ranged between 20.3 and
linear regression model was also developed and its 10.3. The initial biases’ values were set to be one.
results were compared with the calculated ANN These values were optimized during training of the
response factors. network. The input RFs were normalized by passing

The main goal of this work was development of an through a sigmoid function.
ANN to predict the FID RF. Dietz relative response Before training, the network was optimized for the
factors using n-heptane as a standard were consid- number of nodes in hidden layer, learning rate and
ered throughout this work [12,18,19]. This factor momentum. In order to evaluate the performance of
depends on how many carbon atoms are being the NN, the mean square error (MSE), was used as a
oxidized and in which manner the atoms of a criterion. This parameter can be calculated by using
molecule are combined. the following equation:

2MSE 5 1/2O RF 2 RF (5)s dcal exp

3. Experimental
The network was then trained using the training

set by backpropagation strategy for optimization of3.1. Data set
the weights and biases. Training was stopped when
MSE was less than or equal to 0.0067. It is worthThe data set was taken from Ref. [12]. This set
noting that the difference between the normalizedwas randomly divided into two groups, a training set
experimental and predicted values of RFs obtained(Table 1) and a prediction set (Table 2). The training
by Katritzky et al. was 0.067 [12]. Therefore aset consists of 122 compounds and their RFs were
criterion of one tenth of this value was chosen in theused for network generation. The prediction set
present work to improve the ability of the trainedincludes 24 compounds (set 1) and their RFs were
NN. The MSE converged to 0.0067 after 98 000used for evaluation of the generated network. In
iterations.order to double check the predictive ability of the

trained network we have taken another data set from
Ref. [18]. Table 3 shows this set (set 2) which 3.3. Multiple linear regression model
consists of 32 RFs of a variety of organic com-
pounds. The linear regression technique was based on the
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Table 1
Training set and corresponding observed and ANN-calculated response factors

No. Compound RF RF D No. Compound RF RF Dcal exp cal exp

1 Heptane 1.02 1.00 0.02 62 Benzaldehyde 0.80 0.81 20.01
2 Dodecane 0.93 0.96 20.03 63 trans-Cinamaldehyde 0.76 0.72 0.04
3 Pentadecane 0.87 0.90 20.03 64 Benzonitrile 0.81 0.91 20.10
4 Cyclohexane 1.04 1.04 0.00 65 Benzyl cyanide 0.81 0.81 0.00
5 1-Octane 1.00 1.00 0.00 66 1-Bromodecane 0.59 0.60 20.01
6 1-Decane 0.97 0.94 0.03 67 Chlorocyclohexane 0.68 0.71 20.03
7 Benzene 1.04 1.09 20.05 68 Iodobenzene 0.39 0.43 20.04
8 Toluene 1.05 1.17 20.12 69 p-Chlorotoluene 0.76 0.78 20.02
9 o-Xylene 1.05 1.04 0.01 70 p-Bromotoluene 0.56 0.56 0.00
10 Ethylbenzene 1.06 0.93 0.13 71 1-Bromonaphthalene 0.47 0.47 0.00
11 Propylbenzene 1.06 1.05 0.01 72 Diphenyl ether 0.80 0.86 20.06
12 Mesitylene 1.06 1.02 0.04 73 Benzyl phenyl ether 0.74 0.84 20.10
13 2-Methylstyrene 1.01 1.15 20.14 74 Butyl phenyl ether 0.83 0.84 20.01
14 Cyclohexylbenzene 1.02 0.96 0.06 75 1,3,5-Trimethylbenzene 0.47 0.46 0.01
15 Hexamethylbenzene 1.03 1.04 20.01 76 Dioctyl sulfide 0.58 0.55 0.03
16 4-Phenyl-1-butane 1.03 1.08 20.05 77 Diphenyl sulfide 0.71 0.62 0.09
17 Biphenyl 0.91 0.90 0.01 78 Phenyl disulfide 0.63 0.54 0.09
18 Indane 1.04 1.13 20.08 79 Benzylmethyl sulfide 0.81 0.74 0.07
19 Tetraline 1.04 1.01 0.03 80 1-Methylpiperazine 0.59 0.57 0.02
20 cis-Stilbene 0.88 0.76 0.12 81 Quinoline 0.78 0.82 20.04
21 1-Benzylnaphthalene 0.84 0.89 20.05 82 Isoquinoline 0.78 0.82 20.04
22 1,19-Binaphthyl 0.78 0.76 0.02 83 1,2,3,4-Tetrahydroquinoline 0.82 0.85 20.03
23 Phenanthrene 0.78 0.79 20.01 84 Indole 0.70 0.61 0.09
24 Anthracene 0.80 0.76 0.04 85 Benzimidazole 0.64 0.49 0.15
25 Fluorene 0.82 0.86 20.04 86 Phenanthridine 0.66 0.66 0.00
26 1-Octanol 0.70 0.77 20.07 87 Acridine 0.69 0.68 0.01
27 1-Dodecanol 0.61 0.59 0.02 88 1-Methyl-2-pyridone 0.48 0.48 0.00
28 Cycloheptanol 0.76 0.73 0.03 89 Thiophene 0.70 0.67 0.03
29 Cyclohexanol 0.74 0.80 20.06 90 Pyrole 0.76 0.74 0.02
30 Phenol 0.74 0.73 0.01 91 Dibenzofurane 0.73 0.66 0.07
31 p-Cresol 0.78 0.77 0.01 92 Dibenzothiophene 0.68 0.71 0.03
32 o-Cresol 0.79 0.82 20.03 93 Benzothiazole 0.63 0.63 0.00
33 2-Ethylphenol 0.76 0.82 20.06 94 3-Picoline 0.85 0.86 20.01
34 4-Ethylphenol 0.77 0.78 20.01 95 4-Picoline 0.85 0.86 20.01
35 4-Isopropylphenol 0.76 0.72 0.04 96 2-Picoline 0.85 0.88 20.03
36 2-Isopropoxyphenol 0.64 0.72 20.08 97 2,3-Lutidine 0.85 0.86 20.01
37 Benzyl alcohol 0.78 0.86 20.08 98 2,4-Lutidine 0.85 0.86 20.01
38 1-Naphthol 0.57 0.58 20.01 99 2,6-Lutidine 0.86 0.86 0.00
39 5,6,7,8-Tetrahydro-1-naphthol 0.71 0.82 20.11 100 2-Ethylpyridine 0.85 0.80 0.05
40 1,3-Propandiole 0.43 0.45 20.02 101 3-Ethylpyridine 0.84 0.86 20.02
41 1,7-Dihydroxynaphthalene 0.50 0.50 0.00 102 2,4,6-Collidine 0.82 0.87 20.05
42 Octylamine 0.47 0.79 20.22 103 3-Cyanopyridine 0.69 0.77 20.08
43 Dodecylamine 0.68 0.69 20.01 104 3-Pyridinecarboxaldehyde 0.68 0.70 20.02
44 Cyclohexylamine 0.77 0.78 20.01 105 3-Acetylpyridine 0.70 0.68 0.02
45 Cycloheptylamine 0.77 0.79 20.02 106 2-Amino-4,6-dimethylpyridine 0.76 0.66 0.10
46 Aniline 0.86 0.82 0.04 107 Ethyl pipecolinate 0.52 0.53 20.01
47 Benzylamine 0.87 0.85 0.02 108 Ethyl isonicotinate 0.53 0.58 20.05
48 p-Toluidine 0.85 0.87 20.02 109 2,29-Bipyridine 0.69 0.73 20.04
49 N-Methylaniline 0.85 0.87 20.02 110 Cyclohexanecarboxylic acid 0.60 0.60 0.00
50 Diphenylamine 0.74 0.69 0.05 111 Phenylacetic acid 0.58 0.63 20.05
51 Furfurylamine 0.62 0.58 0.04 112 4-Phenylbutyric acid 0.53 0.50 0.03
52 2,4-Dimethyl-3-pentanone 0.78 0.78 0.00 113 trans-Cinamic acid 0.53 0.50 0.03
53 Propiophenone 0.79 0.84 20.05 114 2,4,5-Trimethylbenzoic acid 0.59 0.57 0.02
54 Cyclopentanone 0.75 0.72 0.03 115 Diethyl carbonate 0.40 0.40 0.00
55 Cyclohexanone 0.75 0.76 20.01 116 Benzyl acetate 0.73 0.74 20.01
56 Cyclohexyl phenyl ketone 0.70 0.78 20.08 117 Phenyl benzoate 0.64 0.69 20.05
57 Benzophenone 0.64 0.60 0.04 118 Dihydrocoumarine 0.67 0.60 0.07
58 Acetophenone 0.76 0.81 20.05 119 Isocoumarine 0.81 0.82 20.01
59 1-Tetralone 0.74 0.75 20.01 120 Methylphenyl sulfoxide 0.62 0.58 0.04
60 1,4-Naphthoquinone 0.53 0.68 20.15 121 Nitrobenzene 0.61 0.63 20.02
61 Benzil 0.59 0.59 0.00 122 p-Nitrotoluene 0.60 0.66 20.06
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Table 2
Prediction set 1 and corresponding observed and ANN-calculated response factors

No. Compound RF RF D No. Compound RF RF Dcal exp cal exp

1 n-Decane 0.97 0.94 0.03 13 Cycloheptane 0.75 0.78 20.03
2 Allylbenzene 0.99 1.04 20.05 14 Bromobenzene 0.54 0.55 20.01
3 Cumene 1.21 1.12 0.09 15 Anisole 0.86 0.79 0.07
4 Diphenylmethane 0.89 0.85 0.04 16 Thioanisole 0.79 0.78 0.01
5 Naphthalene 0.86 1.07 20.21 17 1,2,3,4-Tetrahydroisoquinone 0.85 0.85 0.00
6 Bibenzyl 0.93 0.90 0.03 18 Quinaldine 0.80 0.77 0.03
7 1-Decanol 0.72 0.70 0.02 19 4-Ethylpyridine 0.85 0.82 0.03
8 m-Cresol 0.76 0.77 20.01 20 4-Cyanopyridine 0.69 0.67 0.02
9 2-Isopropylphenol 0.76 0.81 20.05 21 2-Acethylpyridine 0.65 0.69 20.04
10 1,6-Dihydroxynaphthol 0.56 0.58 20.02 22 4-(2-Aminoethyl)pyridine 0.72 0.72 0.00
11 Decylamine 0.71 0.76 20.05 23 2-(2-Hydroxyethyl)pyridine 0.63 0.60 0.03
12 o-Toluidine 0.87 0.86 0.01 24 Coumarine 0.61 0.65 20.04

Table 3
Prediction set 2 together with observed and calculated response factors using NN and regression model

No. Compound RF RF RF D Dreg NN exp NN reg

1 Butane 1.12 1.04 1.09 20.05 0.03
2 Pentane 1.09 1.04 1.04 0.00 0.05
3 Octane 1.02 1.00 0.97 0.03 0.05
4 2,2-Dimethylbutane 1.07 1.03 1.04 20.01 0.03
5 2-Methylpentane 1.06 1.03 1.05 20.02 0.01
6 3-Ethylpentane 1.04 1.02 1.02 0.00 0.02
7 4-Ethylheptane 1.02 1.00 1.02 20.02 0.00
8 3,3-Dimethylheptane 1.00 0.99 1.00 20.01 0.00
9 2,4,4-Trimethylheptane 1.01 0.99 1.01 20.02 0.00
10 2,3,3,4-Tetramethylpentane 1.00 0.99 0.99 0.00 0.01
11 1-Hexene 1.03 1.03 0.99 0.04 0.04
12 1-Propanol 0.67 0.64 0.60 0.04 0.07
13 1-Butanol 0.70 0.69 0.66 0.03 0.04
14 2-Methyl-1-propanol 0.70 0.69 0.68 0.01 0.02
15 2-Butanol 0.70 0.69 0.63 0.06 0.07
16 1-Hexanol 0.72 0.72 0.74 20.02 20.02
17 Butanal 0.78 0.71 0.62 0.09 0.16
18 Octanal 0.80 0.71 0.78 20.07 0.02
19 Hexanoic acid 0.57 0.57 0.63 20.06 20.06
20 Octanoic acid 0.74 0.68 0.65 0.03 0.09
21 Methylcyclohexane 1.03 1.02 1.01 0.01 0.02
22 m-Xylene 1.06 1.06 1.04 0.02 0.02
23 1-Methyl-3-ethylbenzene 1.05 1.05 1.01 0.04 0.04
24 1,3,5-Trimethylbenzene 1.05 1.06 0.98 0.08 0.07
25 1-Methyl-4-isopropylbenzene 1.03 1.05 0.99 0.06 0.04
26 n-Butylbenzene 1.03 1.06 0.98 0.08 0.05
27 Isobutyl acetate 0.65 0.60 0.54 0.06 0.11
28 2-Butanone 0.74 0.64 0.61 0.03 0.13
29 3-Heptanone 0.81 0.73 0.71 0.02 0.10
30 3-Octanone 0.81 0.72 0.80 20.08 0.01
31 Isophorone 0.86 0.84 0.85 20.01 0.01
32 Isopentane 0.93 0.92 0.91 0.01 0.02
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Table 4
Specification of multiple linear regression model

aDescriptor Notation Coefficient Mean effect

(1) Relative effective mass of carbon atoms (m n /M ) REMC 0.96660.068 0.617c c w

(2) Relative effective number of carbon atoms (n /n ) RENC 1.01860.129 20.364c a

(3) Minimum valency of a hydrogen atom MVHA 0.67260.119 0.608
(4) Total hybridization component of the molecular dipole THCMD 0.00960.006 20.014
(5) Minimum total bond order (.0.1) of a carbon atom MTBOC 0.15460.023 20.048
(6) Total energy TE 0.00013560.00002 20.210
Constant 0.17660.110
a n is the number of atoms in the molecule; m is the atomic mass of a carbon atom; n is the number of carbon atoms in the moleculea c c

which are conected only to other carbon and/or hydrogen atoms.

construction of linear mathematical model relating optimized in a similar way and the results are shown
the observed response factors to numerically encoded in Fig. 3b–d, respectively. It can be seen from Fig. 3
structural descriptors. A total of nine separate molec- that the optimum values of the weight learning rate,
ular structure descriptors was calculated for each bias learning rate and momentum are 0.99, 0.3 and
compound in the data set. Five of these descriptors 0.7, respectively. In addition it should be noted that
were the same as those chosen by Katritzky et al. the number of input and output nodes of the NN
[12]. However, our descriptors also included core– were 6 and 1, respectively.
core repulsion, ionization potential, heat of formation To evaluate the neural network, the standard error
and total energy of the molecule. Linear models were of prediction (SEP) [22] of its results is compared
formed by a stepwise addition of terms [21]. The with the SEP of the regression model in Table 5. The
best model obtained is given in Table 4. Comparison SEP was calculated using the previous regression
of our MLR model with that of Katritzky et al. model results for the molecules of the prediction set
indicates that the descriptor of ‘‘total molecular one 1 [12] and included in Table 5. From comparison of
center electron–electron repulsion energy’’ in their the SEPs of two models one may conclude that both
equation is replaced by the total energy of molecule models are reliable in predicting of response factor.
in our model. However, the coefficients of descrip- Comparison of the SEP values of two regression
tors in the present linear equation are completely models in Table 5 reveals the superiority of our
different from those of Katritzky et al.’s model [12]. linear model over that of Katritzky et al.’s regression

model in estimating of the prediction set 1 response
factors. It should be noted that the coefficient of the

4. Results and discussion REMC descriptor in our model is positive while that
of the RENC is negative (Table 4). As can be seen

In order to determine the optimum number of from Table 4, the mean effects for the REMC and
nodes in hidden layer several training sessions were RENC descriptors are 0.617 and 20.364, respective-
conducted with different number of hidden nodes. ly. The net effect of these descriptors is increasing of
The value of MSE was calculated and recorded after the response factor as the presence of carbon atoms
every 1000 cycles and for a total of 20 000 itera- increases in the molecule. This is in agreement with
tions. The calculated values of MSE were plotted the experiment and in contrast to the previous work
against the number of iteration, from which the in which the coefficients of both descriptors are
number of hidden nodes with minimum value of negative [12]. However, comparison of the neural
MSE was chosen (Fig. 3a). It can be seen from this network SEP values with those obtained using the
figure that five nodes in hidden layer were sufficient regression equations reveals the superiority of the
for a good performance of the network. Learning neural network over that of the regression models.
rates of weight and bias and also momentum were The predictive power of the trained NN was tested
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Fig. 3. Variations of MSE versus the number of iteration for optimization of (a) number of hidden nodes; (b) learning rate of weights; (c)
learning rate of biases and (d) momentum.

by calculating the RFs of all molecules included in For comparison, the experimental and calculated RFs
the data set. The experimental and NN calculated obtained by using the regression method are also
RFs for the molecules of training set and prediction included in Table 3 for prediction set 2.
set 1 are collected in Tables 1 and 2, respectively. Fig. 4 shows the plot of calculated against the
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Table 5
SEP values for different sets studied in this work

aData set This work Previous work

NN MLR

Training set 6.57 8.95 7.52
Prediction set 1 7.12 5.37 7.49
Prediction set 2 5.02 6.78
a SEPs calculated using the MLR model presented in Ref. [12].

experimental RFs for prediction sets 1 and 2, to-
gether with their correlation coefficients. The highest
absolute error in the calculated RFs of the prediction

Fig. 5. Plot of residuals versus experimental factors.sets was due to the naphthalene (Table 2). The
calculated value of 0.862 for the RF of this molecule
should be compared with the experimental value of
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